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We consider the problems of existence and structure of gaps (pseudogaps) in 
the spectra associated with Maxwell equations and equations that govern the 
propagation of acoustic waves in periodic two-component media. The dielectric 
constant e is assumed to be real and positive, and the value of e = eh on the 
background is supposed to be essentially larger than the value of e = e, on the 
embedded component. We prove the existence of pseudogaps in the spectra of 
the relevant operators. In particular, we give an accurate treatment of the term 
"pseudogap." We also show that if the contrast ~h/e~ approaches infinity, then 
the bands of the spectrum shrink to a discrete set which can be identified with 
the set of eigenvalues of a Neumann-type boundary value problem and thus can 
be effectively calculated. 

KEY WORDS:  Waves; periodic dielectrics; periodic acoustic media; pseudo- 
gaps in the spectrum. 

INTRODUCTION 

The  idea of  f inding and  des ign ing  per iod ic  and  d i so rde red  dielectr ic  

mater ia l s  which  exhibi t  respect ively  gaps  in the spec t rum or  local ized  
m o d e s  was i n t roduced  qui te  recently,  tl 3~ The  hope  to find such d i so rde red  

med ia  for e l e c t romagne t i c  waves  is based on  the r e m a r k a b l e  A n d e r s o n  

loca l i za t ion  p h e n o m e n o n  ~41 for the p r o p a g a t i o n  of  e lec t ron  waves  in a dis- 

o rde red  solid. T h e  genera l  r eason  for the rise of  gaps  or  loca l i za t ion  lies in 

the cohe ren t  mul t ip le  sca t te r ing  and  in terference of  waves  (see, for instance,  
J o h n  15~ and  references therein) .  The  expe r imen ta l  results  t6 81 for per iodic  

and d i so rde red  "dielectrics indica te  tha t  the p h o t o n i c  gap  reg ime and  corre-  
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spondingly light localization can be achieved for some nonhomogeneous 
materials. The analysis of some approximate models and the numerical 
computations~9 141 have shown the possibility of a gap (or pseudogap) 
regime for some two-component periodic dielectrics. The most recent 
theoretical and experimental achievements in the investigation of the 
photonic band-gap structures are published in the series of papers in ref. 15. 

To study the properties of wave propagation in a nonhomogeneous 
medium one has to investigate the spectral properties of the relevant self- 
adjoint differential operators with coefficients varying in space. Such an 
operator for electromagnetic waves has the form 

A~u=Vx (~ t ( x ) V x  ~), x ~ R  ~ 

where ~(x) is a complex vector function o n  R 3. An important analog of 
this operator is the following operator of second order acting on the space 
of complex scalar-valued functions ~,(x) on Ra: 

0 e 
j =  1 

This operator can be associated with the propagation of acoustic waves. In 
these formulas e(x) stands for the electric permittivity for electromagnetic 
waves, whereas for acoustic waves it stands for the mass density of the 
medium. The coefficient e(x), x ~ R  3, we consider here is a periodic field 
bounded from above and below by positive constants. If e(x) is a random 
field which is a small perturbation of a positive periodic field to(X), i.e., 
e(x) =to(X)+ el(x), where e~(x) is a small random field, then according to 
the philosophy of the Anderson localization, one may expect the rise of 
localized states for the random field t(x) in the gaps of the spectrum of the 
relevant operator associated with the periodic to(X). This justifies the 
special interest in periodic structures and their simplest realization in two- 
component periodic media. Namely, the important parameters of such a 
two-component periodic medium which can shape the spectrum tS) are the 
volume-filling fraction, the dielectric constant contrast tb/t~ (where tb and 
e, are, respectively, the dielectric constants of the host material and the 
embedded components), and the shape of atoms of the embedded material 
as well as their arrangement. In particular, the high dielectric constant 
contrast favors the rise of gaps in the spectrum (some living tissues possess 
very high contrastl~6~). 

We give a definition of the term "pseudogap" and prove the existence 
of pseudogaps for two-component dielectrics (or acoustic media) which can 
be thought of as bubbles of air embedded in an optically dense back- 
ground. Thus, we consider the media with high contrast in the dielectric 
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constant. Under the assumption that the contrast approaches infinity, we 
also find the precise limit location of the bands of the spectrum, which 
turns out to be a set of eigenvalues of the Neumann-type boundary value 
problem associated with a bubble of air. This gives some rough estimates 
for where the gaps of the spectrum can be and confirms the dependence of 
the structure of the spectrum on the shape of the bubbles. The rigorous 
proof of the existence of true gaps in the spectrum for the finite-difference 
versions of the operators A and F was obtained in ref. 17. The sketch of the 
proof of the existence of true gaps for the operators A and F under some 
extra conditions is given in ref. 22. 

1. S T A T E M E N T  OF R E S U L T S  

To study the properties of wave propagation in a nonhomogeneous 
medium it is important to investigate the spectral properties of the relevant 
self-adjoint differential operators with coefficients varying in space. The 
operators of interest are 

A ~r't : V x (~'(x) V x ~), )'(x) = t;- I(x), x e R  3 (1) 

j =  1 " J 

x E R  d (2) 

In these formulas ~(x)  is an R3(C3)-valued vector function, ~,(x) is a real- 
(complex-) valued scalar function, and the operator A is the operator 
associated with the propagation of electromagnetic waves, whereas the 
operator F can be viewed as its analog for the case of scalar-valued wave 
functions. In particular, if d =  3, F can be associated with the propagation 
of acoustic waves. We begin with a construction of such a two-component 
medium in the space R a for which the coefficient e(x) ,  x ~ R  d, takes on 
value 1 on a set of disjoint bounded finite domains (a sort of air bubbles) 
spread in the space, and it takes on a value grater than 1 in the rest of the 
space, which we call the background, so e(x)~> 1 for all x. We shall call 
these domains atoms. In fact, we will be interested in the case when e tends 
to infinity on the background, that is, in the medium with a high contrast 
in e on the background and the atoms. In order to describe the medium 
accurately suppose that the space R d contains a set of open bounded 
domains O~ (which do not overlap) with boundaries t30,, respectively, 
where index ct runs over a set of indices Z (it could be the set of natural 
numbers or the lattice Z d for periodic structures). We pick the standard 
orientation for each 00~, that is, the normal vector v points toward the 
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exterior of O,. Thus, if we denote the union of O= by ,~r and its 
complimentary set that forms the background by ~ ,  then we have 

U O==J, O= 0 0/~=~5 if er ~ = R a - a g  
: ~ E Z  

In order to consider the limit case when g tends to infinity on the back- 
ground ~ ,  we introduce e which depends on a parameter s >  1 in the 
following way: 

~=~(s, x ) =  {;  if .,c ~ ~/ 
if x ~  (3) 

We shall assume the boundaries of the domains O, to be regular in the 
following sense. 

Def i n i t i on .  Let f2 be an open domain in R d. We shall say that the 
boundary af2 is regular if it is either smooth (from the class C ~) or if it 
is a parallelepiped. 

In fact, one may consider more general conditions on the smoothness 
of the boundary, but for the sake of simplicity we shall deal with regular 
domains by means of the definition above. 

Now let us suppose that O is one of the domains O~ with a boundary 
00  and consider the following self-adjoint operators: 

A o t b = V x  (Vx ~), x~O, vx(Vx~) l~o=O (4) 

0 
roq,= -Vq,, x~O, ~v qJl,~o =0 (5) 

which act on the Hilbert spaces L~(O) and LZ(O), respectively (the sub- 
index 3 in the first space stands for the dimension of the point values of 
the weave function ~). Thus, the operator f'o can be identified with the 
classical Neumann boundary value problem for the domain O, whereas the 
respective boundary value problem associated with the operator A o can be 
viewed as its analog for the differential operation V • (V • (.)). 

The following statement concerning a periodic dielectric medium (for 
instance, bubbles of air distributed periodically in an optically dense 
background) holds: 

Theorem 1. Suppose that: 

(i) O~=O+ct ,  ~ e Z  d, where 0 is an open bounded domain with a 
regular boundary c~O, and there exists a positive constant d such that 
dist(O,, Or) >/d, if ct :~/3. 
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(ii) The function e(s, x) is defined by (3). 

Let a(Ao) and a(Fo) be the spectra, respectively, of the operators 
A o and F o (these spectra are discrete sets), and E(A, d2) stands for the 
resolution of identity of the self-adjoint operator A. If J is an arbitrary 
interval containing no points of the spectrum a(Ao) or a(Fo), then the 
following limit equalities hold: 

lim E(A, J) ~u = 0, lim E(F, J) ~, = 0 (6) 

where ~ and qJ are arbitrary vectors from the corresponding Hilbert 
spaces. 

The relationship (6) can be interpreted as the existence of pseudogaps 
in the spectrum of the operators A and F if e is large on the background. 

If O is a cube, the spectra a(A o) and a(Fo) can be effectively found. 

Proposition 2. Let O be a cube in d-dimensional space with the 
edge of length L and ad.L be the spectrum of the relevant Neumann 
problem (6). Then 

aa.L = {n2L-~-k 2, k e Z  a} (7) 

and 

f f (Ao )=f f3 .  L, 0"(/ 'O) = 0"a,/_ (8)  

The equality (7) is a well-known classical fact, and (8) will be derived 
later. 

In the case when O, are periodically distributed identical cubes the 
statement of Theorem 1 continue to hold even if the filling fraction of the 
cubes approaches 1. 

Theorem 3. Suppose that the following conditions are satisfied: 

(i) O~, ~ Z  a, are identical cubes with edge of the length L and 
O ~ = O + ( L  +l)c~, ~ Z  a, where l=l(s)>O. 

(ii) The function e(s, x) is defined by (3). 

(iii) The following relationships are true: 

lim /(s)--0, lim sl(s)=oo (9) 
s ~ a c  s ~  

Then for arbitrary interval J containing no points of the spectrum a3.c or 
aa, c we have, respectively, the relationships (6). 



438 Figotin 

Theorems 1 and 3 are consequences of the resolvent convergence of 
operators A s and Fs. Namely, let us introduce the following operators: 

A ' ~  ~ Ao,)GA~, where A ~ - O ,  ~U~L~(~)(10)  
a ~ Z  

F I ~  ~ Fo,)~F.~, where F.~,~=0, ~UEL2(~) (11)  
a E l  

which act on L3(R 3) and L2(~ 'a) (the symbol @ stands for the direct sum 
of operators). 

Theorem 4. Suppose that the conditions of Theorem 1 are 
satisfied. If A.~ and F,. stand for the operators A and F associated with 
e(s, x), respectively, then the following limits (in the strong resolvent sense) 
hold: 

lim As=A~~ (12) 
s ~ a c _  

lira Fs= F I~ (13) 

These equalities hold as well if the conditions of Theorem 3 are fulfilled. In 
this case we drop the operators A• and F~ from the representations for the 
operators A ~~ and F I~ respectively. 

2. PROOF OF THE RESULTS 

We begin with some informal arguments which indicate the validity of 
Theorems 1 and 3 for the operator F. It is well known that the operator F 
can be associated also with the conductance of heat where the function y(x) 
is the position-dependent heat conductivity. If the value s of e(x) on the 
background gets large, then the effective conductance ~ of a slab of the 
background material of thickness l is of the order ~7"~ (sl) ~. By the condi- 
tions of the both Theorems 1 and 3 this effective conductance must tend to 
infinity. Based on this we may expect the following: (i) for large s the heat 
does not propagate between the atoms of the embedded material; (ii) heat 
is reflected by the boundaries of these atoms, i.e., the Neumann boundary 
condition holds. These statements correspond exactly to the statements of 
Theorems ! and 3 for the operator F. The rigorous arguments we proposed 
below employ those observations and they are applicable for both F and 
A operators. 

We notice first that since the function y(x) is discontinuous, then the 
operators A and F defined, respectively, by (1) and (2) are self-adjoint by 
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means of corresponding bilinear forms associated with the relevant differen- 
tial expressions. For the second-order differential operators (in particular, 
the operator F)  this is established, for instance, in ref. 18. As far as the 
operator A is concerned, we notice that all arguments used in the men- 
tioned monograph are evidently applicable to the operator A with some 
minor modifications. In particular, the bilinear form associated with the 
operator A is S~ IV x ~(x)[ 2dx. If we wish to find the action of those 
operators on smooth functions �9 and ~o, respectively, i.e., in the classical 
sense, we ought to consider the ones satisfying appropriate conditions of 
the continuity of the wave functions ~0 and q~ and their derivatives on the 
surfaces of the discontinuity @i, of ~,(x). In particular, ~0 and q~ must be 
continuous, and if v is the normal vector on ~ . ,  then v.),Vq) must take 
equal values on both sides of @~. and the same is true for v x (yV x q~). 

The proofs of the theorems for the operators A and F are analogous 
and they will be considered simultaneously. Since the operator F is an 
elliptic one and somewhat easier to deal with, we shall consider it first. In 
many cases the arguments used for the operator F hold for the operator A 
with some minor changes, and if not, we provide appropriate arguments 
for the operator A specifically. We shall prove first the basic Theorem 4. In 
order to do this, we need to prove some auxiliary lemmas. 

L e m m a  1. Let A,,, h E N  (N is the set of natural numbers) and A 
be self-adjoint nonnegative operators in a Hiibert space H with domains 
D(A,,) and D(A), respectively. For a densely defined linear operator B let 
us denote by B its closure. We assume the following conditions to be 
satisfied: 

(i) There exists a linear subspace D which is dense in H and is a 
core of the operator A, i.e., AID = A. 

(ii) For any C E D  there exists a sequence ~,,, nEN,  such that 
d/,,~ D(A,,) and 

lim [b r  lim blA~b--A,,qs,,ll=0 (14) 

Then A,, converges to A in the strong resolvent sense. 

ProoL We notice first that (14) implies the existence of the strong 
graph limit of A,, i.e., st.gr.-lim A,,= ,4 is a closed symmetric operator. 1~gj 
The relationships (14) also imply evidently A~ = ,4~, ~ ~D, and, therefore, 
in view of the condition (i), ,4 is an extension of ,~=A.  Since A is a self- 
adjoint operator and ,4 is symmetric, we may conclude that A =,4. Thus, 
st.gr.-lim A,, = A. This fact together with the self-adjointness of all operators 

822/74/1-2-29 
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A.,  n e N, and A implies that  the A,, converge to A in the strong resolvent 
sense. (~9) [] 

We adopt  here the following notations: 
For  a measurable  set 12 e R d, 112l is its Lebesgue measure. 
For  a bounded m-dimensional  surface F in R d, [Fire is its area. 
For  a domain  12, g] is its closure. 
For  a domain  12, 012 is its boundary,  v - -v (x ) ,  x e a12, is the normal  

unit vector to a12. 
aj, 0,,, and c3 ~ [ct = (ct I ..... Ctd), where ctj are nonnegative integers] are, 

respectively, the partial derivatives O/Oxj, O/Ov, and 0~ ' - - .  0,] ~. 
Cm(R d) is the set differentiable functions up to the mth  order. 
C~(R d) is the set of infinitely differentiable functions with bounded 

support .  
II~pl[ p,~ = ( ~  le(x)l  p dx) I/p, II~pll p = I[tpll p .~.  
Lz(I2) is the Hilbert  space of scalar functions on 12 with finite 

II �9 1 1 2 , n - n o r m -  
L~(12) is the Hilbert  space of R3(C3)-vector functions on 12 with finite 

II" II 2,a-norm. 
To  regularize functions we introduce in a s tandard fashion a mollifier 

k: R ~ R satisfying the following conditions: 

(i) k(x)=k(Ixl)>~O,k~C~(R) 
(ii) k(x )=0 ,  Ix[ >t 1/2, [. k dx= 1. 

Then we define a mollifier K(x): Rd~-* R by the formula 

K(x)= I-] k(xj) 
1 <~j<~d 

Now for any real-valued function f ( x ) ,  x ~  R u, and a positive number  6 we 
define the following as its t ransformation:  

A(x) = 6-af(x/6) 

In particular, we shall consider the mollifier K,~(x) associated with the 
function K. We also shall use for the s tandard regularization the conyolut ion 
K �9 f of two functions K and f on R a, namely 

K . f =  I K ( x - y ) f ( y ) d y  
R,I 

Besides, for any positive a and any measurable  set 12 ~_ R a we define 

12~ = {x e Ru: dist(x, 12) < a/2 } 
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Lemma 2. Let f2 be an open bounded domain. Then for any & > 0 
there exist a real-valued function @~ E C~(R d) such that: 

(i) $~(x)>>.O, xeRa; ~b,~(x)= 1, x~l2;  tpa(x)=0, xeRa-f2~.  
(ii) For any natural q there exists a positive constant C =  C(q, 12) for 

which the following inequalities are true for any multiindex ~: 

Ila,,ff,~ll2 ~< C~i-I~l I(&O)-,,d, 1 ~< I~1 ~<q (15) 

In particular, if ~f2 is a piecewise smooth surface, the above inequality can 
be replaced by 

lfcl~ll2 ~< C,c51-I~l J~f2la_ ,, 1 ~[cr t ~<q (16) 

Proof. Let Za,, be the characteristic function of the domain/2,s, i.e., 

{10 if x~12~ 
Xa~(x) = otherwise 

Then we introduce functions r = K~ * Xo,~, & > O, and notice that the 
following relationships are true: 

c 3 ~  = (c3~K6) , X ~  = ~-I~l(0~K),s * XQ,, 

This implies 

~b~(x)= 1 if x~I2  

$~(x) = 0 if x E R e -  Q2,~ 

a~$~(x) = 0 if x r (&/'2)2 ~ 

11a~@~ll2 = &-t,l II(a~K),~. XQ,JI2 ~&-u~ Ila~KIII 1(&'2h~l 

The last inequality immediately implies (15). The inequality (15) in turn 
evidently implies (16). This completes the proof of the lemma. �9 

The statement below is a straightforward consequence of Lemma 2. 

Corollary 3. Let 12 be a bounded domain with a piecewise smooth 
boundary and (o.~ C"(Rd); then for any 3 > 0 and for a nonnegative integer 
q, q ~< n, there exist a positive constant C = C(q, I2) such that the following 
inequalities are true: 

II&~(q>-~Pa~o)ll2~C IOd21a_, ~ ~,-~al ii&~,-,~oll~, 0~< loci ~<q (17) 
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Lamina  4. Let s be an open bounded domain with a regular 
boundary and real-valued functions 7(x), ~0(x), x ~ R a, satisfy the following 
conditions: 

(i) There are constants 7i, ) ' , , :7(x)=7i,  if x~,Q; 7(x)=7,, ,  if 
x ~ R d - - Q .  

(ii) q~C2(Rd),  O,.~p[,~o=O. 

Then the following identity holds: 

d d 

Y', Y'. (18) 
j = l  i=1  

where the derivative on the left side is understood as the weak derivative 
(see ref. 18). 

Proof. Clearly ),(x) is discontinuous on 0s so the derivative on the 
left of (l 8) generally speaking could contain relevant Dirac delta-functions. 
But because of the condition (ii) this does not occur and this derivative is 
a regular function which equals the function on the right side of (18). To 
prove this we must show that 

d d 

X. z r. aj= I d j = l  i tpdx  (19) 

for any r ~ C~:(Rd). Let us consider the left integral in (19) and represent 
it as the sum of two integrals over the sets s and R d -  s where function 
), equals the constant ),i and ),,. correspondingly. Then employing the 
divergence theorem in a standard manner and the condition (ii) we easily 
come up with (19). Thus the lemma is proved. �9 

The analogous statement holds for a vector function qS(x ) , xER ~. 
Namely, the following lemma is true. 

L e m m a  5. Let s be an open bounded domain with a regular 
boundary and real-valued functions 7(x), ~(x),  x ~ R d, satisfy the following 
conditions: 

(i) There are constants 7i, Y,,:7(x)=Ti, if x~.Q; 7(x)=7,, ,  if 
x ~ R d - - Q .  

(ii) ~eC2(R' / ) ,  v x ( V x r  Then the following identity is 
true: 

V x (7(V x ~) )  = ~,(V x (V x ~ ) )  

where the derivative on the left side is understood as the weak derivative. 
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Proof. The proof is analogous to that of the lemma. Namely we 
show that 

( v •  7(v  • dx = (V • (V • dx 

for any ~ C( (Ra) .  We use the same argument as in the previous lemma. 
The only difference is that here we employ the identity qb.(V• ~ ) -  
~u. (V x ~ )  = V. ( ~  • qs) and the condition (ii) of this lemma. �9 

L e m m a  6. Let [2, y(x), qJ(x), and ~b(x) satisfy the conditions of 
Lemmas 4 and 5 and A and F be the corresponding operators defined by 
( I )  and (2) by means discussed at the beginning of the section. Then there 
exist functions Ca, q~a ~ C~-'(Ra), 6 > 0, and a constant C such that 

Ca(x) = 0 if x r t2a, 

(ha(x) = 0 if x r 0 a, 

In addition, 

IlzoF?- Fqoa[12~ C?e 6-1, 6 > 0  

IIzs~AO--AOaI[2<~.CL.6 ', 6 > 0  

lim II~o-~al12=O, lim 11~-~6112=0 (20) 
6 ~ 0  , 5 ~ 0  

Proof. 
are defined in Lemma 2. Notice first that 

r162 .x'~f2: ~,.r162 

�9 (x) = ~,,~(x), x ~ n ;  v x (V x ~ ) =  v x (Vx  ~ a ) = 0 1 e o  

From this and Lemmas 4 and 5 we immediately obtain 

Fr  = 7Vr Fca  = 7Yea 

Ar = ?(V x (V x r A~,~=?( # x (V x r ) 

Let us define tp a = ~,~r and ~,~ = ~'a~, where the functions ~ba 

(21) 

(22) 

(23) 

(24) 

In view of Corollary 3 and the relationships (16) and (21)-(24) we have 

IIz~Fr162162 -~, 6 > 0  

llzaAr - A r ~< II?(V x (V x r  ?(V x (V x r 

+ l l ? (Vx(VxCa) ) l l 2~C~ , ,6  - t ,  6 > 0  

The validity of (20) follows immediately from (16), which completes the 
proof of the lemma. �9 

Proposition 7. Let O be an open bounded domain with regular 
boundary (see the Definition), and A o and Fo be self-adjoint operators 
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defined by (4) and (5), respectively. Let us denote by DA.O and Dr.o the 
functions q~ and q~ which satisfy the conditions (ii) in Lemmas4 and 5, 
respectively. Then the operators A o and Fo are essentially self-adjoint on 
D A,o and Dr.o, respectiv.ely. 

Proof. If O is smooth, the validity of the proposition follows from 
ref. 20. If O is a parallelepiped, then all eigenfunctions can be found 
explicitly and the statement can be justified straightforwardly. �9 

Proof of Theorem 4. Suppose first that the conditions of Theorem 1 
are satisfied. To prove the strong resolvent convergence of the operators A, 
and F,. we shall apply Lemma 1. We claim that for a sufficiently wide set 
of functions u and U there exist, respectively, vectors us and Us such that 

lim Ilu-u, .[ l=0,  lim IIFC~ (25) 

lim IIU-U.~II=0. lira IIAt~ (26) 

Notice that in view of (10) and (11) the operators F t~ and A c~ are direct 
sums of the operators Fo, Ao (where O runs over the set {O,}) and the 
operators F~, A~, respectively. Let us fix O and consider ueDr,  o, 
UEDA, o (the sets D are defined in Proposition7). Being given those 
u and U, we apply Lemma6 for ~,~= 1, y,,=s -1, 6 = 6 ( s ) = s  -I/2, and 
u.~ = ~oa~.,.~, Ur = q~a~.~. Then we just observe that the statements of Lemma 6 
imply straightforwardly (25) and (26). If u eL2(~),  we consider a set of 
v, e C { ( ~ )  such that l im,_~ Ilu-v,lt=0. Then if a(t)=sup{b]Au,]l: 
0 < r ~< t}, we pick any nondecreasing function t(s) such that s ia(t(s))~ 0 
as s --, oo and set u~. = v,(.,.). For this choice of u and u.,., (25) is evidently 
true. The proof of (26) for UeL:3(~) is analogous. Now we define 

and DA by the analogous formula and observe the operators F ~~ and A ~~ 
are essentially self-adjoint on this sets respectively in view of Proposition 7. 
Then we notice that Lemma 1 is applicable for the operators A., A ~~ and 
F,, F ~~ respectively and thus (12) and (13) are true. 

If we suppose now that the conditions of Theorem 3 are fulfilled, then 
the previous arguments hold entirely with the following comments. 

1. Being given u or U and employing Lemma 6, we set 6 = 6 ( s ) =  
l(s)/3 and shift the argument of the relevant functions by l(s) ~, taking in 
account the simple dependence of O~ on s by the condition (i) of 
Theorem 3. Then we use (9). 

2. We drop the sets L2(~) and L~(~) from consideration since they 
degenerate to zero space because of (9). 
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This completes the proof of Theorem 4. �9 

Proof of Proposition 2. Relationship (7) is well known, so we have 
to establish just the representation (8). If A=A(x) ,  x ~ R  3, is a vector 
function, we denote by ~s its "curl," i.e., ~A = V x A. Then we consider the 
following two eigenvalue problems: 

~(s 2 ~  ~'(s 2 ~  

N: [ v • ~ ~l,~o = O, D: [ v x ~ l , ~ o = 0  

where N and D stand, respectively, for the Neumann- and Dirichlet-type 
problems. In fact, we are interested here mainly in the N-problem. One can 
easily see that for any differentiable scalar function ~b the vector function 
V~b is the solution of the N-problem for 2 = 0. If 2 ~-0 and ~' is a smooth 
enough solution of either the N- or D-problem, then V- ~ =  0. Thus, from 
now on we shall consider just such 7 t that V. ~ =  0, and 2 ~ 0. Now we 
notice the following simple connection between the two problems: if ~u is 
a smooth enough solution of the D-problem, then ( ~  is a solution of the 
N-problem and vice versa. Then we recall that O is a cube and consider the 
following set of vector functions A(a, 2), 1211 

I 
al cos ~/IXI sin la2X2 sin/~3x3"] 3 

A(a,/~)= azsinplxlcos#2x2sinp3x3[,I a.~l= ~. afl~j=0 (27) 

a 3 sin/qx~ sin/~2x2 cos ]'/3X3.-II j= 1 

a ~ R  3 (or C3), /.//(/zL) E Z 3 

One can verify straightforwardly that ~2A(a, la)=l~2A(a, la) and the 
functions A(a,/1) satisfy the boundary conditions of the D-problem. On 
other hand, the closure of the linear span of these functions forms clearly 
a subspace of L](R 3) which is exactly the closure of the linear span of 
vector functions ~ such that V- ~u= 0. In view of the connection between 
the N- and D-problems we may conclude that (8) is true. Besides, the 
corresponding eigenmodes of the N-problem have the form ~A(a, #) where 
A, a, and tt satisfy (27) with real a~ and whole I~j/(nL). This completes the 
proof of Proposition 2. �9 

Proof of Theorems I and 3. The statements of these theorems 
follow from the resolvent convergence t~9~ of operators A and F as s ~  oo 
and Proposition'2. 

A C K N O W L E D G M E N T S  

The author thanks Prof. B.R. Vainberg for useful discussions. This 
work was supported by U.S. Air Force grant AFOSR-91-0243. 



446 Figotin 

REFERENCES 

1. P. W. Anderson, The question of classical localization A theory of white paint? Phil. Mag. 
B 52:505 (1985). 

2. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, 
Phys. Rev. Lett. 58:2059 (1987). 

3. S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. 
Rev. Lett. 58:2486 (1987). 

4. P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109:1492 
(1958). 

5. S. John, Localization of light, Phys. Today, 33-40 (May 1991). 
6. M. P. Van Albada and A. Lagendijk, Observation of weak localization of light in random 

medium, Phys. Rev. Lett. 55:2692 (1985). 
7. J. Drake and A. Genack, Observation of nonclassical optical diffusion, Phys. Rev. Lett. 

63:259 (1989). 
8. E. Yablonovitch and T. J. Gmitter, Photonic band structure: The face-centered-cubic case, 

Phys. Rev. Lett. 63:1950 (1989). 
9. S. John and R. Rangavajan, Optimal structures for classical wave localization: An 

alternative to the loffe-Regei criterion, Phys. Rev. B 38:10101 (1988). 
10. E. N. Economou and A. Zdetsis, Classical wave propagation in periodic structures, Phys. 

Rev. B 40:1334 (1989). 
11. C. M. Soukoulis, E. N. Economou, G. S. Grest, and M. H. Cohen, Existence of Anderson 

localization of classical waves in a random two-component medium, Phys. Rev. Lett. 
62:575 (1989). 

12. K. M. Leung and Y. F. Liu, Full vector wave calculation of photonic band structures in 
face-centered-cubic dielectric media, Phys. Ret,. Lett. 65:2646 (1990). 

13. Ze Zhang and S. Sathpathy, Electromagnetic wave propagation in periodic structures: 
Bloch wave solution of Maxwell's equations, Phys. Rev. Lett. 65:2650 (1990). 

14. K. M. Ho, C. T. Chart, and C. M. Soukoulis, Existence of a photonic gap in periodic 
dielectric structures, Phys. Rev. Lett. 65:3152 (1990). 

15. Development and applications of materials exhibiting photonic band gaps, J. Opt. Soc. 
Am. B 10:280--413 (1993). 

16. J. W. Penn, Electrical parameter values of some human tissues in the radiofrequency 
radiation range, SAM-TR-78-38 (1978). 

17. A. Figotin, Existence of gaps in the spectrum of periodic structures on a lattice, J. Star. 
Phys. 73(3/4) (1993). 

18. D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators (Clarendon 
Press, Oxford, 1990). 

19. M. Reed and B. Simon, Methods o/ Modern Mathematical Physics, Vol. I: Functional 
Analysis (Academic Press, New York, 1972). 

20. Ui. M. Berezanskii, Expansions hi Eiget!functions of Selfadjoint Operators (AMS, 
Providence, Rhode Island, 1968). 

21. W. K. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, 
Reading, Massachusetts, 1962). 

22. A. Figotin and P. Kuchment, Band-gap structure of the spectrum of periodic Maxwell 
operators, J. Star. Phys. 74(1/2) (1994). 

Communicated by J, L. Leholt'itz 


